O.P.Code: 23EC0407

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year II Semester Regular Examinations July/August-2025 EM WAVES AND TRANSMISSION LINES

(Electronics and Communications Engineering)

		(Electronics and Communications Engineering)			
Time: 3 Hours		Max.	Mark	s: 70	
		PART-A			
		(Answer all the Questions $10 \times 2 = 20$ Marks)	0.01		
1	a	Define position and displacement vectors?	CO1	L1	2M
	b	Define dielectric constant.	CO1	L1	2M
	C	An antenna radiates in free space and H= 50 Cos(1000t-5y)ax A/m.	CO ₂	L2	2M
		Calculate ω and β .			
	d	Write the expression for Ampere's Force Law	CO ₂	L1	2M
	e	What is Brewster angle?	CO ₃	L1	2M
	f	Define skin depth.	CO ₃	L1	2M
	g	Write Distortion less condition	CO ₄	L1	2M
	h	List different types of transmission line	CO4	L1	2M
	i	State the average power of a transmission line.	CO ₅	L1	2M
	j	What is a matched line?	CO ₅	L1	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
2	a	Apply Gauss Law to evaluate the electric flux density at a point P due to	CO1	L3	5M
		the point charge located at the origin.			
	b	Derive the expression for poisson's and laplace's equations.	CO1	L3	5M
		OR			
3	a	Point charges 1mC and -2mC are located at (3,2,1) and (-1,-1,4)	CO1	L4	5M
		respectively. Calculate the electric force on 10nC charge located at			
		(0,3,1).			
	b	Determine the Electric flux density at a point P due to infinite sheet of	CO1	L3	5M
		Charge using Gauss law.			
		UNIT-II			
4	9	Define Displacement Current with expression.	CO2	L1	5M
7		Determine the Magnetic Field intensity due to Infinite line Current by	CO ₂	L3	5M
	U	applying Ampere's Circuital law.	COZ	LJ	3,111
		OR			
5		Define Faraday's law. Determine the Transformer EMF for the time	CO2	L3	5M
3	а	varying fields.	COZ	LS	SIVI
	h	Derive the energy density of magnetostatic field.	CO2	L3	5M
	D		COZ	L3	SIVI
_		UNIT-III			
6		Evaluate the expressions for reflection coefficient and transmission	CO ₃	L4	10M
		coefficient by a normal incident wave for a dielectric medium.			
_		OR			
7	a	Derive the expression for intrinsic impendence and propagation constant	CO ₃	L3	5M
		in a good conductor.			
	b	Discuss about power and Poynting vector.	CO ₃	L2	5M

UNIT-F	V
CITIE	٠.

		, _			
8	a	With neat sketch explain about Primary and Secondary constants of	CO ₄	L3	5M
		transmission line.			
	b	Define and explain the different types of transmission lines used in	CO ₄	L3	5M
		communication systems.			
		OR			
9	a	A transmission line with $R = 0.1 \Omega/m$, $L = 0.3 \mu H/m$, $C = 50 pF/m$, and G	CO ₄	L4	5M
		= 0.01 S/m is operating at 1MHz. Calculate the characteristic impedance			
		and propagation constant.			
	b	Explain briefly about phase velocity and group velocity.	CO ₄	L2	5M
		UNIT-V			
10	a	Derive the expression for the input impedance of a lossless transmission	CO ₅	L3	5M
		line.			
	b	A transmission line of characteristic impedance 50 Ω is terminated with a	CO ₅	L3	5M
		load of 100Ω . Calculate the reflection coefficient at the load.			
		OR			
11		Explain the Smith Chart and its use in transmission line problems.	CO5	L3	10M
		*** END ***			

